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ABSTRACT

The National Transonic Facility (NTF) has been operational in a combined
checkout and test mode for about 3 years. During this time there have been
many challenges associated with movement of mechanical components, operation
of instrumentation systems, and drying of insulation in the cryogenic environ-
ment. Most of these challenges have been met to date along with completion of
a basic flow calibration and aerodynamic tests of a number of configurations.
This paper reviews some of the major challenges resulting from the cryogenic
environment with regard to hardware systems and data quality. Reynolds number.
effects on several configurations are also discussed.



INTRODUCTION

The National Transonic Facility (NTF), which was constructed by NASA with
a goal of meeting the national needs for High Reynolds Number Testing, has been
operational in a checkout and test mode for about 3 years. The order of mag-
nitude increase in Reynolds number over existing transonic wind tunnels pro-
vided by the NTF, figure I, is the result of operating at cryogenic tempera-
ture and stagnation pressures to 8.8 atmospheres. Although the cryogenic
temperatures provide some significant and well documented benefits from a
Reynolds number standpoint, the harsh environment also provides equally sig-
nificant challenges for reliable operation of large mechanical systems and
instrumentation.

The approach followed during the 3 years of operating in a combined
checkout and test mode had some obvious advantages for a facility like the
NTF where there is not a significant experience base. Known problems can be
solved while identifying and solving those problems that will only show up by
using the tunnel in a testing mode. The end result is a fully operational
facility at an earlier date. However, there are also some disadvantages.
Most significant among them is that testing during this time period is at a
much reduced level of efficiency. For a facility like NTF where a very high
level of efficiency is important, it is difficult _or both operators and ob-
servers to maintain perspective during this test period.

Over the past 3 years a host of operating problems resulting from the

cryogenic environment have been identified and solved. These ranged from

making mechanical/electrical systems functional to eliminating temperature-

induced vibration, to minimizing the effect of moisture outgassing from the

thermal insulation. Additionally, a preliminary flow calibration has been

completed, and a series of aerodynamic tests has demonstrated data quality

and provided Reynolds number effects on several configurations. Currently,

a major effort is under way, through the summer of 1988, which is devoted to
improving operating efficiency with a goal of being ready to efficiently

support both research and development testing requirements by the fall.

This paper will review some of the more significant efforts during this

time period and summarize the NTF status concerning hardware and instrumenta-

tion systems, operating constraints imposed by the cryogenic environment, data

quality, and some Reynolds number data.
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SYMBOLS

wing chord, ft.

lift coefficient

rolling moment coefficient

rolling moment coefficient due to sideslip

normal force coefficient

yawing moment coefficient

yawing moment coefficient due to sideslip

pressure coefficient

degrees Fahrenheit

gallons per minute

horsepower

liquid nitrogen

Mach number

milivolts

total pressure

free-stream static pressure

root mean square (rms) value of fluctuating component of static
pressure

dynamic pressure

Reynolds number

stagnation temperature

mean velocity streamwise

ms value of mean velocity streamwise

fraction of chord

partial derivative of Mach number with respect to test section
length

model angle of attack
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AW

model sideslip angle

test section floor and ceiling angle relative to the horizontal

TESTING AND CHECKOUT EXPERIENCE

The testing and checkout experience is summarized in figure 2. The ini-
tial start-up experience (prior to 1985) is reported in references I to 3. A_
stated previously, the testing that has been accomplished to date has a two-
fold purpose of providing aerodynamic data and exposing testing problems
associated with the tunnel and instrumentation systems. Nine of the configu-
rations tested are shown in figure 3 which collectively utilized the maximum
capability of the NTF at both ambient and cryogenic conditions over the Mach
number range. Two other aircraft configurations have also been tested but
will not be discussed here. The primary model used for checkout of both tun-
nel and instrumentation systems was the Pathfinder I which has a high aspect
ratio wing with a supercritical airfoil (reference 4). This model was first
installed in the tunnel during the first quarter of 1985.

The major areas receiving attention during the checkout are listed at the
bottom of figure 2 and include model access, process controls, moisture in the
tunnel, model vibration, and tunnel/test instrumentation. All of these prob-
lems were worked simultaneously as indicated by the figure and were phased in
with the testing schedule as appropriate. The tunnel was unavailable for
cryogenic operation during most of the first half of 1987 due to a failure of
an expansion joint in the liquid nitrogen supply system.

Model Access. - Access to the model requires the movement of large compo-
nents w--wTt_Tin the tunnel, (figures 4, 5, and 6), over the temperature range
from ambient to fully cryogenic. The details of this system are defined in
references 3 and 5. The test section plenum is isolated from the rest of the
tunnel circuit by large isolation valves. The process of putting these valves
in place..... involves unlocking and translating a large section of the contraction
cone and the high speed diffuser away from the plenum; this process uses dual
electrical driven actuators with a seven-foot stroke which must operate in
phase on each component. Additionally, the ability to make up limit switches
or components to fairly close tolerance where the compdne_sm_y be exposed to
large temperature excursions is required. With the plenum vented to atmo-
spheric pressure, the 9- by 12-foot doors in the pressure shell are opened and
the test section sidewalls are dropped so that access housings may be inserted
to encapsulate the model as shown in figures 5 and 6. The reliable movement
of these large components at cryogenic temperatures has required several modi-
fications to the basic actuation concept. _ese modifications have resulted
from operational experience and were implemented over the past 3 years. A
final series of modifications to these compoHe_s iS being made during the
current enhancement period which should make it a fully operational system.

Process Controls. - The primary controls for the tunnel are closed loop
and provide fast response interactive control of pressure, temperature, and
Mach number and control of model attitude (see figure 7). THe Controls for
the test section variables (tunnel walls and re-entry flaps) are also closed
loop but have slower response requirements. _=_
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A detailed description of the process controls is provided in reference 6

and only a brief summary will be presented here. The approach used in design

of the pressure, temperature, and Mach number controls involved using a mathe-

matical model of the process to determine circuit response characteristics in
order to establish the design criteria for the control hardware and the ini-

tial control laws. This approach as indicated in figure 8 required measure-

ment of actual tunnel response characteristics for verification of the control

laws and update of the math model. This effort was a first priority in the

early tunnel operation and indicated that the accuracy required could not be
obtained due to insufficient system resolution and excessive instrumentation

noise. To correct this problem the microprocessors, servo control valves, and

instrumention were upgraded. The upgraded stagnation pressure and Mach number

control systems were completed in the first half of last year. The Mach num-

ber system provides a rapid response and will control around set point to

within ±O.OOl. The last system to become fully operational was the tempera-

ture control. Initially, this system was based on a measurement of the liquid
nitrogen flow rate entering the tunnel. Minimal success was obtained in

making this measurement and an alternative approach which calculates the flow

rate has been recently implemented and provides adequate performance.

Moisture Contamination. - During the early operation of the NTF at Cryo-

enic temperatures, a coating was observed on several models that had a frost-
ike appearance. Quantifiable measurements of the extent of the coating were

not obtainable. However, it was clear that frost-like crystals were forming

and that reflected light was making it visible with a television system. An

extensive study was undertaken to determine the contaminating substance and

its source as well as its possible effect on the aerodynamic data. This study
identified the contaminant to be water.

Further evaluation of the incoming liquid nitrogen, various tunnel purge
technique, and samples of the thermal insulation system identified the insula-

tion as the water source. The closed-cell polyisocyanhrate foam used for the

thermal insulation has been shown to have approximately 1.5 percent water

by weight. (As a reference, dry wood has approximately 6-percent water by

weight.) The problem, as shown in figure 9, is that at the cryogenic tempera-
tures only a very small quantity of water is required to saturate the free-

stream gas. For example, at -70°F only about 0.2 pounds of water is required

to saturate all of the gas in the tunnel at atmospheric pressure, while at

+70°F about 200 Ibs of water is required. Two questions naturally arise at
this point. How to eliminate the moisture, and what is its effect on the

aerodynamic data measurements? Extensive investigations have been conducted

in both areas. With regard to the question of eliminating the moisture, the

studies have indicated that the simplest solution appears to be drying the

tunnel and then maintaining a dry environment. Drying has been accomplished

in the past by maintaining the tunnel at the maximum warm temperature (approx-

imately 150°F) for several hours in dry nitrogen gas with a periodic purge.
The diffusion of water from the insulation in the NTF is a maximum at this

condition as indicated in figure 10. The figure also illustrates the reduc-

tion in diffusion with decreasing temperature which is, of course, a favorable

effect. Since in the nitrogen operating mode the tunnel is continuously
vented, i.e., purged to maintain constant stagnation pressure, test conditions

with very small amounts of condensation can be obtained. Aerodynamic studies

conducted under these conditions, which will be discussed later, have indi-

cated that the resulting effects on the aerodynamic data are not measurable.



Therefore, the plannned approach when the tunnel is brought back into opera-
tion at the conclusion of the current enhancementperiod will be to dry it for
several days and keep it closed to atmospheric air. It should be pointed out
that the drying process takes place in static as well as operating conditions;
therefore, it continues to dry over weekendsand nonworking shifts.

The two cryogenic tunnels in Europe with internal insulation, KKKat Koln
and T2 at Toulouse, have experienced similar moisture concerns and have also
reached the conclusion that they can achieve conditions of dryness where
effects on the aerodynamic data are not measurable. Weare convinced from
experience to date, with the NTFand other studies, that procedures can be
followed that will eliminate moisture contamination as a concern regarding
aerodynamic data quality.

Model Vibration. - Significant vibration of the model/balance combination
in the latera! plaBe has been encountered at some conditions since the initial

operation of the NTF. After some period of operation the vibration was found

to be more severe when the structure was cold. The model pitch system is

illustrated in figure 11 and is composed of an arc sector driven by a hydrau-

lic cylinder. Restraint is provided by a series of bearing pads located at

both the top and bottom of the sector. The loads are transmitted through the

pads to the internal tunnel structure. There is also a fairing on the down-

stream part of the sector that is fixed to the tunnel structure and provides a
cavity for instrumentation leads. The attachment of the fixed fairing to the

arc sector is a slip joint which allows the sector to move independently of

the fairing. The bearing pads, while providing restraint, also have clearance

to allow for thermally induced movement of the internal structure.

The vibration problem has been investigated both experimentally and ana-

lytically. In the experimental investigation, the Pathfinder model was used
as a test vehicle. Both it and the model support system were extensively
instrumented as follows:

a. Six component force balance and 3-axis accelerometer package in the
Pathfinder model

b. Pressure tranducers in the fixed fairing and test section walls

c. Accelerometers on the fixed fairing, bearing pads, and the surrounding

tunnel support structure r

d. Strain gages and thermocouples on the tunnel support structure

The analytical investigation involved detailed calculations of the

dynamic structural respose and of the unsteady aerodynamic characteristics of

the model support system.

Experimental observations were made of the dynamic structural response

characteristics, Mach number, dynamic-pressure, test temperature, and coldsoak

time. The installation of vortex generators and splitter plate on the fixed

fairing afterbody helped to identify unsteady flow at the rear of the arc sec-

tor as one of the sources of dynamic excitation. Eventually, the primary fac-
tor governing the dynamic response of the model was found to be the clearance

tolerance between the bearing pads and the surface of the arc sector. A



procedure was evolved for setting the clearance adjustment which reduced the
model dynamic response to acceptably low levels independent of temperature
cycling. Someof the test results are illustrated in figure 12 which shows
the dynamic yawing momentas a function of stagnation temperature for several
of the test configurations of the arc sector. Although the low level shownin
the figure for the last case is completely satisfactory, it may be sensitive
to adjustment with time due to temperature cycling.

Instrumentation. - For several years prior to initial operation of the
NTF an extensive research and development program was undertaken by the

Instrument Research Division at Langley to develop instrumentation systems for

basic measurements of forces and moments, pressures, and angle of attack that

would function with both reliability and accuracy in the cryogenic environ-

ment. The results of this program were the development of strain gage bal-

ances that were not temperature controlled and heated instrument packages for

pressure and angle of attack measurements. These instrument systems were

developed in cryogenic chambers and verified to the extent possible, in the
O.3-Meter Transonic Cryogenic Tunnel and indicated good performance and sound-

ness of the basic concepts. Upon application of these instruments to models

in the NTF, there were several system problems that had to be resolved. The

most significant of these were the effect of leads required to support the

pressure instrumentation system on the balance axial force component, and the
calibration system for the electronic scanning pressure (ESP) system. Recent

tests, both in the NTF and in the cryogenic checkout chamber, have indicated

satisfactory resoultion of both of these problems.

As will be discussed in a later section, a strong concern from the outset

has been data quality. In this regard, an extensive effort has been carried
out to eliminate data scatter due to electrical noise and extraneous signals.

Care was taken from the beginning to provide a "clean" instrumentation ground,

but as is often the case, extraneous signals can creep into the system. A

significant effort has been made over the past year to track down and elimi-
nate noise sources that were infiltrating the data system. The results of

this effort are indicated in figure 13. The figure illustrates a reduction in

data scatter by a factor of 5 to a level less than 10 microvolts. This level

corresponds to a balance error of less than 0.1 percent of full scale.

OPERATING CONSTRAINTS

The NTF has the general appearance of, and is often talked about, as a

typical continuous operating fan driven wind tunnel that has the potential to

mass produce data on a continuous basis. Although in principle the potential
exists, it is somewhat misleading to think about a large cryogenic tunnel in

this context. In reality the operation must be viewed much as a blow-down
tunnel with efforts directed toward minimizing run time and maximizing data

gathering rates. The two main constraints with regard to run time are liquid
nitrogen logistics and costs, and model access. It was shown in the early

1970's that the application of cryogenics to wind tunnel testing provided the

most cost effective approach to high Reynolds number testing. This does not

mean, however, that testing at high Reynolds numbers will carry the same cost

and degree of complexity as testing in the many ambient temperature and pres-
sure tunnels around the country. This is illustrated in figure 14 where the

energy cost ratio (liquid nitrogen is a form of energy) is shown as a function



of Reynolds numberratio for the NTFcompared to the Langley 16-Foot Transonic
Tunnel. An order of magnitude increase in Reynolds numberhas an energy cost
ratio of approximatley 44. In the cases where high Reynolds number is re-
quired for research or development testing, the cost is cheap comparedto
flight test. But because of this cost difference, test programs and objec-
tives must be carefully defined and supported by adequate precursor studies at
low Reynolds numbers. Therefore, it is not well suited for researchers to
exercise broad freedom or for indiscriminate development programs.

LN2 Supply System. - Liquid nitrogen is supplied to the NTF by a commer-
cial air separation piant located adjacent to the Langley property and con-

nected to the NTF site by a pipeline. The capability of this system is shown

in figure 15. The challenge is to optimize the interface of the plant which

operates continuously 24 hours per day at a 300 ton per day rate with the

intermittent operation of the NTF, which can use LN 2 to a maximum rate of
30 tons per minute. This requires, of course, storage tanks to serve as a

buffer. The current system has a 2100 ton storage tank at the plant and a

700 ton tank located at the NTF with capability to transfer approximately one

tank per 24 hour day. The system can sustain a use rate of 2100 tons per week

and if the tunnel has not been using nitrogen for a while, can build up to a

maximum quantity available of 4800 tons for a week. This tends to optimize On

two week test programs using liquid nitrogen assuming all tanks are full at
the start. The maximum transfer rate of the pipeline is 656 tons or approxi-

mately one NTF tankful per day; therefore, the maximum use rate is one tank-
ful per day. As shown in figure 16, if operation is started on Monday morn-

ing with the equivalent of four NTF tankfuls available and used at a rate of

1 tank per day, with 0.5 tanks being resupplied by the plant, and no use over

the weekend, the total supply is exhausted by the end of the second week. The

options at that point are either to operate on one-half tank per day (the

plant output) Whi¢_ is not practical, or to allow B days for the nitrogen sup-

ply to be replenished and use the tunnel in the air mode or some other capac-

ity during this period. This use scenario can be changed, of course, by _

increasing the plant capacity and/or storage and transfer rate. A decision to
increase the plant capacity must take into consideration long term use rates.

The most immediate benefit wili be provided by an increase in storage capacity

and associated transfer rates. Current plans are to triple the NTF onsite

storage capacity in FY 1990. This will tend to optimize at about a three week

test program in nitrogen.

The most important aspect of the tunnel operation from cost considera-

tions is the speed of changing test conditions and data acquisition. This is

driven primarily by the degree and quality of automation. Figure 17 illus-

trates the impact of time per data point for a typical test condition of
M = 0.8 and temperature = -250°F. This illustration includes time to change

angle of attack and Mach number and adjust temperature and pressure. When the

NTF was first brought on-line and manual control was used, times averaged

greater than 45 seconds per point. After the current enhancement period it is

expected to be under 30 seconds per point with a goal of 7 to 10 seconds per

point with further refinements in the control and operating system. The re-
duction in electrical signal noise discussed earlier has a direct impact on

this in that it reduces the number of data samples required to be averaged to
obtain high quality data.



DATAQUALITY

In this section the status of flow calibrations and efforts to assess
data quality will be discussed. The discussion will include both steady and
dynamic aspects of the flow calibration, the ability to measure_lach numbers
and angle of attack, importance of wall boundary effects, and the effect of
moisture contamination or "frost" on the data.

Flow Calibration. - As reported previously, references 3 to 10, the NTF

has been opera__oughout the operating envelope as shown in the upper left

of figure 18. The initial calibration looked at the distributions of tempera-

ture, pressure, Mach number, and flow angularity on the tunnel centerline as

measured by the model upright and inverted. More recent efforts concerned the
details of the Mach number calibration and the effect of temperature on flow

angle.

The ability to vary the test section wall angle provides the capability

to maintain zero Mach number gradient through the test section, thus eliminat-

ing model buoyancy effects in the empty tunnel for all test conditions. A

typical variation of wall angle with Mach number is shown in the left of fig-
ure 19. This particular case is for a warm temperature of 100°F and varies

from approximately 0.2 ° convergence at M = 0.2 to 0.4 ° divergence at M = 1.15.

A typical correction to Mach number as calculated from the plenum static or
reference pressure is also shown. In general the quality of the steady flow

appears to be excellent and sufficient adjustments are available on the test

section geometry, i.e., wall angle and re-entry flap settings, to eliminate

the existence of any Mach number gradients in the empty tunnel.

In order to investigate the effect of tunnel structural deformation due

to temperature gradients in the structure on flow angle with temperature, fre-

quent measurements of flow angle have been made during the last several test

programs. The data presented in figure 20 are typical of results obtained
from these measurements. With the exception of one point the effective flow

angle is always equal to or less than 0.02 ° which is approaching the measure-

ment accuracy. This effect will continue to be monitored until sufficient

history is developed to have a firm basis for determining the required fre-

quency of flow angle measurements.

NTF Dynamic Flow Quality. - In 1980 while the NTF was still under con-
struction, the plans for flow quality measurement were described extensively
in reference 11. The measurements were to consist primarily of fluctuating

pressure and velocity measurements. Since that time, hot-film probes and

fluctuating pressure gages have been operated in the test section at the

locations indicated in figure 21, and further tests are planned as also shown.

Some results of the measurements made to date are shown in figures 22 and

23. These results have been excerpted from work by W. B. Igoe on a proposed
doctoral dissertation to be submitted to the George Washington University.

Figure 22 shows the root-mean-square fluctuating static pressure measured in
the NTF as a function of Mach number for a unit Reynolds number of 6 million

per foot. The fluctuating pressures were measured in air on the test section
sidewall and have been divided by free-stream static pressure. Fluctuating

static pressures have been measured in the free stream in a number of other
large transonic wind tunnels using a 10° cone on the centerline (see
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reference 12 for example). Someof these results have been included for
comparison in figure 22 for a Reynolds numberrange of 1.3 to 5 million per
foot.

The results of hot-film probe measurementsat low Machnumber in the test
section are shownin figure 23. These measurementswere madein the free
stream in air with the slots closed. Results are shownfor the streamwise
measurementsat total pressures of 1 and 8 atm. Although there is consider-
able scatter at a pressure of I atm, the measurementlevels are about 0.1 per-
cent, which was the target level for the NTF. Streamwise hot-wire probe mea-
surements madein the Langley LowTurbulence Pressure Tunnel (LTPT) at total
pressures of 1 and 10 atm (reference 13) are shownfor comparison.

Further measurementsin the NTFare planned using fluctuating static
pressure probes in the test section free stream, and hot-film probes in the
test section, settling chamber, and in the vicinity of the cooling coil and
screens. The measurementswill be madeover the full operating range of the
NTF. By the time the measurementsare completed, the dynamic flow quality of
the NTFwill have been fully documented.

MachNumberand Angle of Attack Sensitivities. - Prior to looking at
either Reynolds numbereffects or the effects of frost on data quality, it was
desirable to obtain an assessment of the sensitivity of the model to the basic
test parameters, Machnumberand angle of attack, and somequalitative assess-
ment of our ability to measure them. As stated in the introduction, the
primary model used for assessing data quality was the Pathfinder I Model.
This model was built early in the program for the purpose of developing model
design and fabrication technology as well as providing a research model. It
has an aspect ratio 10 wing with a supercritical airfoil section typical of
supercritical airfoil design technology of the mid 1970's. As a result, shock
movementis very sensitive to small changes around the design point in Mach
numberand angle of attack. This made it a goodmodel for use in assessing
our ability to measureMachnumberand angle of attack in the NTF. Figures 24
to 26 illustrate the results obtained from this assessment. The figures show
pressure distributions for an inboard and an outboard wing station at a Mach
numberaround 0.82 with transition fixed at 10 percent of chord. The data of
figure 24 showsthat a Machnumber increment of 0.0038 results in a shock
movementof about 6 percent of chord for the outboard wing station. In light
of the high degree of sensitivity to Machnumber, a series of runs were com-
pared where all variables except Machnumberwere held constant and Mach
numbervaried in very small increments of 0.0001 to 0._006. Wing pressure
distributions for these cases are shownin figure 25. The data show an
orderly progression of shock movementand the we11_defined curves suggest that
both wing pressures and Machnumberare being measuredwith a high degree of
accuracy.

_ _i _::_i_::: _::: _ _ :: _z _

The sensitivity of this model to angle of attack is illustrated in fig-
ure 26. In this case, the angle of attack increment was 0.054 ° with a Mach

number difference of 0.0013. Again, the:shock movement is about 5 to 6 per-
cent. However, about one half of the movement can be attributed to Mach

number effectS. These data support the point that _hehighestqual_ty instru-

mentation is an absolute requirement for using the NTF to understand incremen-

tal effects of Reynolds number and compressibility. Further they support the
conclusion that a high degree of accuracy is currently available in the Mach



number, angle of attack, and model pressure measuring systems. The data also
underscore the importance of being able to accurately assess wall boundary
effects. Recent research on this subject by W. B. Kemp(ref. 14), P. A.
Newmanand associates (ref. 15), is described by Dr. Newmanin a separate
session of this symposium. Sophisticated techniques have been developed which
utilize measured tunnel wall static pressures to calculate model induced vari-
ations of Machnumberand upwashthrough the test section. Figure 27 shows
typical contours, in the region of the model, of wall induced Machnumber
corrections. For this size model at the conditions illustrated the correc-

tions are relatively small, AM = 0.001, but as illustrated in the previous

figures, corrections of this magnitude are significant if high quality data
are to be obtained.

Moisture Contamination "Frost" Effects. - Having established confidence

that small incremental effects of the basic test parameters, Mach number, and

angle of attack could be both controlled and measured, an investigation to

assess the possible effects of frost on the data was undertaken. Care was

also taken to insure that comparable test parameters were obtained where the

only significant variable was that in one case frost was visible on the model

and in the other case it was not visible. Wing pressure distributions from

these two cases are compared in figure 28. Although care was exercised in

setting the test parameters it should be noted that the Mach number is dif-

ferent by 0.0004 and the angle of attack by 0.01 °. These differences are

believed, based on previous discussion, to account for the small difference in

shock location shown in the data of figure 28 for the outboard wing station.

AFter accounting for the difference in shock location, there is a small dif-

ference in pressure level ahead of the shock that may be a small effect of

frost. In general the two cases are in very close agreement and provide con-

fidence that when planned tunnel drying procedures are used and the inside of

the tunnel kept closed to atmospheric air, frost on the models will not be a

problem with regard to data quality.

REYNOLDS NUMBER EFFECTS

During this initial checkout and testing phase several Reynolds number

sensitivity studies have been conducted using both the conventional air mode

and the cryogenic capability

Air Operation. - The operating envelope in air is shown in figure 29. It
is restricted above a Mach number of 0.4 by the drive power in the variable

speed motors. A maximum Reynolds number capability of about 20 million per

foot at a Mach number of 0.38 is available. This Reynolds number is the

maximum available in this speed range and tunnel size in the United States.
One of the attractive features of this capability is that a constant dynamic

pressure line tends to be close to the maximum drive power boundary. There-

fore, models designed for testing at high subsonic or transonic speeds at 1 to

2 atmospheres can also be tested at high Reynolds numbers at the lower !lach

numbers at the same dynamic pressure and model loads. One case where this was

done was the EA-6B wing modification program. The objectives and overall

results from this program are described in reference 16. In summary, it
involved modifying the wing leading-edge slat and trailing-edge flap airfoil

sections with a major goal of improving maximum lift at loiter and maneuver

conditions. A photograph of the EA-6B configuration mounted in the NTF is
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shownin figure 30. The effect of Reynolds numberon the lift characteristics
at a Machnumberof 0.30 for the basic and modified configuration are shownin
figure 31. The 1.4 million Reynolds numbercase corresponds to testing at 1
atmosphere stagnation pressure. Two points are significant. First, as would
be expected, Reynolds numbereffects on CLmaxare large for all configura-
tions. Second, modifications to the leading-edge slat showedno benefit at
the low Reynolds numbercondition; however, at the higher Reynolds numberthe
slat benefit was approximately equal to that of the flap. These data are an
example of the potential pitfalls of relying on low Reynolds numberdata for
configuration refinement. The effect of Reynolds numberon lateral and direc-
tional stability as measuredby C_B and Cn_ are shownin figures 32 and 33.
The effects are not as dramatic as those shownfor CLmax, but in general a
stabilizing increment in lateral stability was obtained with increasing Rey-
nolds number. The exception to this was the basic configuration above _= 16°
and the modified wing configuration with glove and vertical tail extension
above _ equal about 14° . A more stabilizing effect in CnBwas obtained for
all configurations with increasing Reynolds number.

Cryogenic Operations. - Results from three of the configurations tested
during this perTod will be briefly discussed here. They include the Path-
finder I, a Lockheed high-wing transport which was a Lockheed wing tested on
the Pathfinder I fuselage, and a rather large submarine model.

The Pathfinder I (figure 34) was tested over a range of conditions; how-
ever, most of the test was aimed at evaluating instrumentation and moisture
concerns. Most of the high Reynolds numberdata was obtained in the early
test program and in retrospect may have been contaminated with moisture
effects and instrumentation errors. Therefore, the data shownin figure 35
are for more intermediate Reynolds numbers(RN = 5 and 18 million) which were

known to be free of instrumentation errors. These data are for a Mach number

of 0.82, a constant angle of attack and essentially constant lift coefficient

with transition fixed at approximately lO-percent chord. These conditions are

the design point for the wing. The natural transition point of the 18 million

Reynolds number case was estimated to be essentially at the trip location.

The effects of Reynolds number are relatively small with only a slight aft

movement of the shock indicated at the outboard wing station.

The data for the Lockheed configuration shown in figure 36 show a much

more pronounced effect of Reynolds number. A photograph of the model is

presented in figure 37. For the case with transition fixed, the strip was

located at a constant 1-inch aft of the wing leading edge. The difference in

shock location between transition fixed and free at a Reynolds number of 5
million is about 18 percent of chord. A significant difference was obtained

by increasing the Reynolds number to 30 million. A further increase to 40

million produced a negligible effect. These data clearly support the well-

known need to be able to monitor transition location as a function of Reynolds
number if effects at Reynolds numbers less than full scale are to be

interpreted.

The submarine test in NTF was unique in that full scale Reynolds number
was obtained in a wind tunnel for the first time. A photograph of the model

and Reynolds number velocity envelope is presentd in figure 38. Details of

the test and data have been omitted for classified security reasons. In the

12



test both static and dynamic measurementsof pressures were obtained through
the boundary layer in the plane of the propeller for evaluation and develop-
ment of scaling laws. As can be seen on the right of figure 38, data in the
past using a 6 percent scale model have been obtained at Reynolds numbers
about an order of magnitude below full scale. The test in the NTFextended
these data well into the region of full-scale submarine operation.

SUMMARY

The National Transonic Facility has been operational in a checkout and

test mode for the past 3 years. During this time there have been many chal-

lenges associated with testing in a large cryogenic wind tunnel. For the most

part they centered around the effect of large temperature excursions on the
mechanical movement of large components, the reliable performance of instru-

mentation systems, and an unexpected moisture problem with dry insulation.

Most of these challenges have been met, and it is expected that the rest of

them will be met during a major effort that is ongoing through the summer of

1988 to improve operational efficiency. Also, during the past 3 years a

preliminary flow calibration has been completed and a data quality evaluation

conducted along with high Reynolds number aerodynamic tests of several config-
urations. Tests were also conducted that provided major inputs to several

programs that were not discussed for classification reasons. There is still a

requirement for a major effort to develop and implement flow visualization and
diagnostic techniques for maximum utilization of the facility. The current

NASA facility revitalization program includes funding for these activities in

FY'89 and 90. However, from a basic facility standpoint, we believe that it

will be ready to efficiently support research and development requirements by

the fall of 1988.
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NATIONAL TRANSONIC FACILITY

_-CONTRACTION CONE HIGH SPEED

......._- y '_ ISOLATIONVALVE
(STORED)

Figure 4. Test section and plenum isolation system.
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!
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Figure 5.

SECTION THRU MODEL

PITCH CENTER

Schematic of model access system illustrating access tubes in the

inserted and retracted positions.
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NATIONAL TRANSONIC FACILITY

Figure 6. Hodel access system concept with tubes installed for model entry.
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Schematic of NTF process controls.Figure 7.
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PRESSURE, MACH NO, & TEMPERATURE CONTROL SYSTEMS
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Figure 11. Model sting-support and arc-sector system.
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NTF CALIBRATION RESULTS
T = 100°F
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Figure 21. Location of dynamic flow quality measurements.
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FREESTREAM TURBULENCE

Figure 23.
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Figure 30. EA-6B model mounted in NTF.
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Figure 34. Photograph of the Pathfinder I model mounted in the NTF.
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LOCKHEED HIGH WING TRANSPORT CONFIGURATION

Figure 36. Photograph of Pathfinder I fuselage with the Lockheed transport
wind installed in the NTF.
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Figure 37.
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Figure 38. Photograph of submarine model mounted in the NTF and Reynolds
number envelope.
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